June 20th, 2024

Video annotator: a framework for efficiently building video classifiers

The Netflix Technology Blog presents the Video Annotator (VA) framework for efficient video classifier creation. VA integrates vision-language models, active learning, and user validation, outperforming baseline methods with an 8.3 point Average Precision improvement.

Read original articleLink Icon
Video annotator: a framework for efficiently building video classifiers

The Netflix Technology Blog introduces the Video Annotator (VA) framework, aiming to efficiently build video classifiers using vision-language models and active learning techniques. The framework addresses challenges in traditional machine learning model training by involving domain experts directly in the annotation process. VA leverages active learning and zero-shot capabilities of large models to guide users in focusing on harder examples, enhancing sample efficiency, and reducing costs. By integrating model building into the annotation process, VA allows for user validation before deployment, fostering trust and ownership. The framework supports continuous annotation, enabling rapid model deployment, quality monitoring, and quick resolution of edge cases. Experiments show VA outperforms baseline methods in creating high-quality video classifiers, demonstrating an 8.3 point improvement in Average Precision across various video understanding tasks. VA empowers domain experts to make improvements independently, enhancing efficiency and trust in the system.

Related

20x Faster Background Removal in the Browser Using ONNX Runtime with WebGPU

20x Faster Background Removal in the Browser Using ONNX Runtime with WebGPU

Using ONNX Runtime with WebGPU and WebAssembly in browsers achieves 20x speedup for background removal, reducing server load, enhancing scalability, and improving data security. ONNX models run efficiently with WebGPU support, offering near real-time performance. Leveraging modern technology, IMG.LY aims to enhance design tools' accessibility and efficiency.

Optimizing AI Inference at Character.ai

Optimizing AI Inference at Character.ai

Character.AI optimizes AI inference for LLMs, handling 20,000+ queries/sec globally. Innovations like Multi-Query Attention and int8 quantization reduced serving costs by 33x since late 2022, aiming to enhance AI capabilities worldwide.

GitHub – Karpathy/LLM101n: LLM101n: Let's Build a Storyteller

GitHub – Karpathy/LLM101n: LLM101n: Let's Build a Storyteller

The GitHub repository "LLM101n: Let's build a Storyteller" offers a course on creating a Storyteller AI Large Language Model using Python, C, and CUDA. It caters to beginners, covering language modeling, deployment, programming, data types, deep learning, and neural nets. Additional chapters and appendices are available for further exploration.

HybridNeRF: Efficient Neural Rendering

HybridNeRF: Efficient Neural Rendering

HybridNeRF combines surface and volumetric representations for efficient neural rendering, achieving 15-30% error rate improvement over baselines. It enables real-time framerates of 36 FPS at 2K×2K resolutions, outperforming VR-NeRF in quality and speed on various datasets.

Francois Chollet – LLMs won't lead to AGI – $1M Prize to find solution [video]

Francois Chollet – LLMs won't lead to AGI – $1M Prize to find solution [video]

The video discusses limitations of large language models in AI, emphasizing genuine understanding and problem-solving skills. A prize incentivizes AI systems showcasing these abilities. Adaptability and knowledge acquisition are highlighted as crucial for true intelligence.

Link Icon 0 comments