Writing generic collection types in Go: the missing documentation
The blog post delves into challenges of implementing generic collection types in Go, focusing on creating a sortable Set. The author faces compilation errors, explores solutions, and discovers syntax for generic type constraints, enhancing understanding.
Read original articleThe blog post discusses the challenges faced when trying to implement generic collection types in Go, specifically focusing on creating a sortable Set of any type. The author initially attempts to define a SortableSet interface using two generic type parameters but encounters compilation errors due to the Sortable interface being generic itself. After exploring different approaches, the author settles on a self-referential type definition without the comparable constraint, allowing for the creation of a MapSet and a SliceSet using a slice for storage. The author encounters issues with equality comparisons in the Contains method, leading to a workaround using the Less method. Ultimately, the author discovers the syntax for generic type constraints in Go, utilizing interfaces to combine type constraints with method declarations, enabling the creation of a generic min function. This revelation sheds light on the underlying mechanisms of type constraints in Go generics, providing a clearer understanding of how to express constraints effectively in generic type definitions.
Related
Interface Upgrades in Go (2014)
The article delves into Go's interface upgrades, showcasing their role in encapsulation and decoupling. It emphasizes optimizing performance through wider interface casting, with examples from io and net/http libraries. It warns about complexities and advises cautious usage.
Group Actions and Hashing Unordered Multisets
Group actions are used to analyze hash functions for unordered sets and multisets, ensuring order-agnostic hashing. By leveraging group theory, particularly abelian groups, hash functions' structure is explored, emphasizing efficient and order-independent hashing techniques.
Three ways to think about Go channels
Channels in Golang are locked, buffered queues for message passing. They integrate with goroutines, select blocks, and more, offering efficient concurrency. Understanding their role and benefits is crucial for Golang developers.
Atomic Operations Composition in Go
The article discusses atomic operations composition in Go, crucial for predictable results in concurrent programming without locks. Examples show both reliable and unpredictable outcomes, cautioning about atomics' limitations compared to mutexes.
Common Interface Mistakes in Go
The article delves into interface mistakes in Go programming, stressing understanding of behavior-driven, concise interfaces. It warns against excessive, non-specific interfaces and offers guidance from industry experts for improvement.
Related
Interface Upgrades in Go (2014)
The article delves into Go's interface upgrades, showcasing their role in encapsulation and decoupling. It emphasizes optimizing performance through wider interface casting, with examples from io and net/http libraries. It warns about complexities and advises cautious usage.
Group Actions and Hashing Unordered Multisets
Group actions are used to analyze hash functions for unordered sets and multisets, ensuring order-agnostic hashing. By leveraging group theory, particularly abelian groups, hash functions' structure is explored, emphasizing efficient and order-independent hashing techniques.
Three ways to think about Go channels
Channels in Golang are locked, buffered queues for message passing. They integrate with goroutines, select blocks, and more, offering efficient concurrency. Understanding their role and benefits is crucial for Golang developers.
Atomic Operations Composition in Go
The article discusses atomic operations composition in Go, crucial for predictable results in concurrent programming without locks. Examples show both reliable and unpredictable outcomes, cautioning about atomics' limitations compared to mutexes.
Common Interface Mistakes in Go
The article delves into interface mistakes in Go programming, stressing understanding of behavior-driven, concise interfaces. It warns against excessive, non-specific interfaces and offers guidance from industry experts for improvement.