My finetuned models beat OpenAI's GPT-4
Alex Strick van Linschoten discusses his finetuned models Mistral, Llama3, and Solar LLMs outperforming OpenAI's GPT-4 in accuracy. He emphasizes challenges in evaluation, model complexities, and tailored prompts' importance.
Read original articleAlex Strick van Linschoten claims that his finetuned models, including Mistral, Llama3, and Solar LLMs, outperform OpenAI's GPT-4 in accuracy for his test data. He discusses the process of loading datasets, adding predictions, and evaluating the models' performance. Strick van Linschoten highlights the challenges faced during evaluations but emphasizes their importance in measuring progress. He delves into the complexities of finetuning models and the tradeoffs involved. The post includes code snippets demonstrating data assembly and model predictions. Strick van Linschoten explores the use of GPT models and the need for tailored prompts to achieve accurate results. He experiments with OpenAI GPT-4o and GPT-4 Turbo, adjusting prompts to compare their performance with his finetuned models. The post provides insights into the intricacies of model evaluation and the considerations when working with different AI models.
Related
Run the strongest open-source LLM model: Llama3 70B with just a single 4GB GPU
The article discusses the release of open-source Llama3 70B model, highlighting its performance compared to GPT-4 and Claude3 Opus. It emphasizes training enhancements, data quality, and the competition between open and closed-source models.
Testing Generative AI for Circuit Board Design
A study tested Large Language Models (LLMs) like GPT-4o, Claude 3 Opus, and Gemini 1.5 for circuit board design tasks. Results showed varied performance, with Claude 3 Opus excelling in specific questions, while others struggled with complexity. Gemini 1.5 showed promise in parsing datasheet information accurately. The study emphasized the potential and limitations of using AI models in circuit board design.
Claude 3.5 Sonnet
Anthropic introduces Claude Sonnet 3.5, a fast and cost-effective large language model with new features like Artifacts. Human tests show significant improvements. Privacy and safety evaluations are conducted. Claude 3.5 Sonnet's impact on engineering and coding capabilities is explored, along with recursive self-improvement in AI development.
How to think about creating a dataset for LLM fine-tuning evaluation
Alex Strick van Linschoten emphasizes objective evaluation of LLM fine-tuning, focusing on accuracy, out-of-domain data, information gradations, spelling variations, and structured data tasks. He plans systematic model comparisons for performance enhancement.
Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs
The study presents a method to boost Large Language Models' retrieval and reasoning abilities for long-context inputs by fine-tuning on a synthetic dataset. Results show significant improvements in information retrieval and reasoning skills.
Data extraction is a use case that fine-tuned models are fantastic at, so I'm not surprised that OP got good results. That said, I've also found it's pretty easy to beat GPT-4 across many task types if you have a way of getting strong training data. We published some research[1] a week ago where we found that across 4 example tasks spanning creative summarization, question answering, data extraction and classification a fine-tuned Llama 3 8B was able to outperform GPT-4 on 3 of them. The key was to create a repeatable way of generating high-quality training data, which is also addressed in the post.
Personally, my PhD did fine grained ACE-like event and sentiment extraction and "small" specialized finetuned transformers outperformed prompting LLMs like BERT and Roberta-large. Would love to see an inclusion of small model scores with some sota pipelines.
This is great work anyway even if it replicates known results!
I am pretty sure that a finetuned smaller model would be better and faster for this task. It would be great to start finetuning and sharing such smaller models: they do not really have to be really better than commercial LLMs that run online, as long as they are not at least worse. They are already much faster and cheaper, which is a big advantage for this purpose. There is already need for these tasks to be offline when one cannot share the data with openai and the like. Higher speed and lower cost also allow for more experimentation with more specific finetuning and prompts, with less care about token lengths of prompts and cost. This is an application where smaller, locally run, finetunable models can shine.
Still good to see someone walk through their fine tuning process, with a mix of hosted and local options.
2. It would be nice to try again with 0 temperature, as I do a lot of structured data extraction. In my experience 0 temperature should always be used, and it can make a huge difference. Temperature of 1 essentially means that it will start to pick tokens with lower probability of being accurate...
Seems to me then, priority one should be "free and open source all the models as hard as possible, so that EVERYONE can fine-tune."
(This being a subset of the idea of, free / open source is generally preferable for both freedom and quality)
85% of the time they beat GPT-4.
You can see the results here: https://predibase.com/fine-tuning-index.
The site has a series of interactive charts and a link to our Arxiv paper.
Why is this one labelled with start_date: 2011-02-07?
> Afghan, Coalition Forces Clear Northern Kandahar ISAF Joint Command - Afghanistan 2011-02-D-081 For Immediate Release KABUL, Afghanistan (Feb. 12) – Afghan and coalition forces set out to provide security and assist the local population during a clearing operation in a remote village in Shah Wali Kot district, Kandahar province, Feb. 8. District Chief of Police Bacha Khan, and his policemen; Afghan commandos from 2nd Company, 3rd Commando Kandak, along with U.S. service members from Special Operations Task Force – South, searched the village throughout the day and detained 20 suspected insurgents. Also found were 80 pounds (36 kilograms) of homemade explosives and various improvised explosive device-making materials. Leading a squad during the operation was Afghan commando Sgt. Hafiz Rahman, who said this operation has shown him progress. “The people are respecting us,” Rahman said. “They ask us if we want tea, or ‘do we want bread?’ They are thankful for the security.” Children during the operation brought commandos blankets in the evening and offered them food throughout the day.
Trying to find the source, I'm also not seeing any indication of Feb 7.
https://www.dvidshub.net/news/65238/afghan-police-commandos-...
---------------
And why is this labelled as Mar 6, GPT-4o and I personally find Mar 7 to be logical.
ISAF Joint Command Morning Operational Update, March 8, 2011 ISAF Joint Command - Afghanistan 2011-03-S-022 For Immediate Release KABUL, Afghanistan (March 8, 2011) Afghan and coalition forces targeted a Taliban district chief, killed one insurgent and detained several others during an operation in Burkah district, Baghlan province, yesterday. The Taliban district chief maintains ties to Taliban senior leadership throughout Kunduz, Baghlan, and Takhar provinces. He is involved in purchasing weapons and IEDs. Intelligence reports led the security force to the targeted compound in the city, where Afghan forces called for all occupants to exit the buildings peacefully before conducting a search. During that time, an armed individual threatened the security force and the force returned fire, killing him. Several suspected insurgents were detained after initial questioning at the scene.
But despite that the "finetuned" model also gets Mar 6. How does the finetuned model get Mar 6?
The hype is really getting tiresome. There is no way to get from here to any intelligent system with the current techniques. New breakthroughs will require insights into discrete spaces which are not amenable to curve fitting with gradient descent.
The Claude models all have a 200,000 token limit and respond _really_ well to examples - you can feed them in as chat JSON message pairs of user input / ideal assistant output.
Haiku is dirt cheap for this kind of thing and with 200,000 tokens you can probably provide a dozen or so examples.
---
Test 1: KABUL, Afghanistan (Jan. 25, 2013) During a security operation in Andar district, Ghazni province, yesterday, an Afghan and coalition force killed the Taliban leader, Alaudin. Alaudin oversaw a group of insurgents responsible for conducting remote-controlled improvised explosive device and small-arms fire attacks against Afghan and coalition forces. Prior to his death, Alaudin was planning attacks against Afghan National Police in Ghazni province.
Train: KABUL, Afghanistan (Jan. 8, 2013) – During a security operation in Washer district, Helmand province, yesterday, an Afghan and coalition force killed the Taliban leader, Mohammad Sayed, and one other insurgent. Mohammad Sayed distributed weapons and ammunition to Taliban fighters. Prior to his death, Sayed was attempting to acquire rockets for attacks targeting Afghan government officials in the province.
---
Test 2: For Immediate Release
KABUL, Afghanistan (Aug. 6, 2012) Afghan and coalition forces conducted a security operation in search of a Haqqani leader in Tsamkani district, Paktiya province, yesterday. During the operation the security force engaged a group of insurgents with a precision airstrike. After the strike, the Afghan and coalition security force conducted a follow-on assessment and confirmed several insurgents had been killed in the strike. They also confirmed the strike had not injured any civilians or damaged any civilian property.
Train: For Immediate Release
KABUL, Afghanistan (July 22, 2012) — Afghan and coalition forces conducted a security operation in Muhammad Aghah district, Logar province, Saturday.
During the operation, a group of armed insurgents were engaged with a precision airstrike. After the strike, the Afghan and coalition force conducted a follow-on assessment and confirmed multiple insurgents had been killed.
The security force also confirmed the airstrike had not injured any civilians or damaged civilian property.
---
Test 3: ISAF Joint Command Morning Operational Update March 24, 2011 ISAF Joint Command - Afghanistan 2011-03-S-081 For Immediate Release KABUL, Afghanistan (March 24, 2011) A separate Afghan and coalition security force targeted a Taliban IED cell leader in Kandahar today. The leader is responsible for planning, preparing and executing explosive-device attacks on Afghan civilians, Afghan and coalition security forces. The joint security force targeted the leader’s suspected compound in Kandahar City based on tips from citizens. The security team contained the area and detained several suspected insurgents. There were no shots fired and no damage done to the targeted compound.
Train: ISAF Joint Command Operational Update Dec. 22 ISAF Joint Command - Afghanistan 2010-12-S-267 2699, 2935, 3022, 3078 For Immediate Release Download PDF KABUL, Afghanistan (Dec. 22) – Several insurgents were killed by Afghan National Security and International Security Assistance Forces in separate clearing operations in southern Afghanistan over the last 24 hours. An Afghan Army and ISAF patrol spotted some insurgents emplacing an improvised explosive device in Sangin district, Helmand province today. After gaining positive identification, combined forces engaged the enemy position, killing two insurgents.
Related
Run the strongest open-source LLM model: Llama3 70B with just a single 4GB GPU
The article discusses the release of open-source Llama3 70B model, highlighting its performance compared to GPT-4 and Claude3 Opus. It emphasizes training enhancements, data quality, and the competition between open and closed-source models.
Testing Generative AI for Circuit Board Design
A study tested Large Language Models (LLMs) like GPT-4o, Claude 3 Opus, and Gemini 1.5 for circuit board design tasks. Results showed varied performance, with Claude 3 Opus excelling in specific questions, while others struggled with complexity. Gemini 1.5 showed promise in parsing datasheet information accurately. The study emphasized the potential and limitations of using AI models in circuit board design.
Claude 3.5 Sonnet
Anthropic introduces Claude Sonnet 3.5, a fast and cost-effective large language model with new features like Artifacts. Human tests show significant improvements. Privacy and safety evaluations are conducted. Claude 3.5 Sonnet's impact on engineering and coding capabilities is explored, along with recursive self-improvement in AI development.
How to think about creating a dataset for LLM fine-tuning evaluation
Alex Strick van Linschoten emphasizes objective evaluation of LLM fine-tuning, focusing on accuracy, out-of-domain data, information gradations, spelling variations, and structured data tasks. He plans systematic model comparisons for performance enhancement.
Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs
The study presents a method to boost Large Language Models' retrieval and reasoning abilities for long-context inputs by fine-tuning on a synthetic dataset. Results show significant improvements in information retrieval and reasoning skills.