The Illustrated Transformer
Jay Alammar's blog explores The Transformer model, highlighting its attention mechanism for faster training. It outperforms Google's NMT in some tasks, emphasizing parallelizability. The blog simplifies components like self-attention and multi-headed attention for better understanding.
Read original articleJay Alammar's blog delves into the concept of The Transformer, a model utilizing attention to enhance training speed in deep learning models. The Transformer surpasses Google's Neural Machine Translation model in certain tasks and is highly parallelizable, making it Google Cloud's recommended reference model for their Cloud TPU offering. The blog simplifies the model's components, detailing the encoding and decoding components, self-attention layers, and feed-forward neural networks. It explains the process of self-attention, where each word's representation is influenced by other words in the input sequence, aiding in better encoding. The post breaks down the self-attention calculation from vectors to matrices, introducing multi-headed attention to improve the model's ability to focus on different positions and maintain various representation subspaces. The blog aims to make complex machine learning concepts accessible to a broader audience by providing visualizations and explanations of each component's functionality within The Transformer model.
Related
Shape Rotation 101: An Intro to Einsum and Jax Transformers
Einsum notation simplifies tensor operations in libraries like NumPy, PyTorch, and Jax. Jax Transformers showcase efficient tensor operations in deep learning tasks, emphasizing speed and memory benefits for research and production environments.
Researchers run high-performing LLM on the energy needed to power a lightbulb
Researchers at UC Santa Cruz developed an energy-efficient method for large language models. By using custom hardware and ternary numbers, they achieved high performance with minimal power consumption, potentially revolutionizing model power efficiency.
Etched Is Making the Biggest Bet in AI
Etched invests in AI with Sohu, a specialized chip for transformers, surpassing traditional models like DLRMs and CNNs. Sohu optimizes transformer models like ChatGPT, aiming to excel in AI superintelligence.
Whats better: Neural nets wider with less layers or thinner with more layers
Experiments compared Transformer models with varying layer depths and widths. Optimal performance was achieved with a model featuring four layers and an embedding dimension of 1024. Balancing layer depth and width is crucial for efficiency and performance improvement.
xLSTM Explained in Detail
Maximillan Beck's YouTube video delves into XLSTM as a Transformer alternative in language modeling. XLSTM combines LSTM and modern techniques to tackle storage and decision-making issues, aiming to rival Transformers in predictive tasks.
I had a lot of trouble understand what was going on from just the original publication[0].
My favorite article on the latter is Cosma Shalizi's excellent post showing that all "attention" is really doing is kernel smoothing [0]. Personally having this 'click' was a bigger insight for me than walking through this post and implementing "attention is all you need".
In a very real sense transformers are just performing compression and providing a soft lookup functionality on top of an unimaginably large dataset (basically the majority of human writing). This understanding of LLMs helps to better understand their limitations as well as their, imho untapped, usefulness.
0. http://bactra.org/notebooks/nn-attention-and-transformers.ht...
Related
Shape Rotation 101: An Intro to Einsum and Jax Transformers
Einsum notation simplifies tensor operations in libraries like NumPy, PyTorch, and Jax. Jax Transformers showcase efficient tensor operations in deep learning tasks, emphasizing speed and memory benefits for research and production environments.
Researchers run high-performing LLM on the energy needed to power a lightbulb
Researchers at UC Santa Cruz developed an energy-efficient method for large language models. By using custom hardware and ternary numbers, they achieved high performance with minimal power consumption, potentially revolutionizing model power efficiency.
Etched Is Making the Biggest Bet in AI
Etched invests in AI with Sohu, a specialized chip for transformers, surpassing traditional models like DLRMs and CNNs. Sohu optimizes transformer models like ChatGPT, aiming to excel in AI superintelligence.
Whats better: Neural nets wider with less layers or thinner with more layers
Experiments compared Transformer models with varying layer depths and widths. Optimal performance was achieved with a model featuring four layers and an embedding dimension of 1024. Balancing layer depth and width is crucial for efficiency and performance improvement.
xLSTM Explained in Detail
Maximillan Beck's YouTube video delves into XLSTM as a Transformer alternative in language modeling. XLSTM combines LSTM and modern techniques to tackle storage and decision-making issues, aiming to rival Transformers in predictive tasks.