MobileLLM: Optimizing Sub-Billion Parameter Language Models for On-Device Use
The GitHub repository contains MobileLLM code optimized for sub-billion parameter language models for on-device applications. It includes design considerations, code guidelines, outcomes on common sense reasoning tasks, acknowledgements, and licensing details. Contact repository individuals for support.
Read original articleThe GitHub repository at the provided URL pertains to MobileLLM, focusing on training code optimized for sub-billion parameter language models for on-device applications. It covers design considerations, citations, code execution guidelines, outcomes on zero-shot common sense reasoning tasks, acknowledgements, contact details, and licensing specifics. For additional information or support regarding this repository, users are encouraged to contact the listed individuals within the repository.
Related
GitHub – Karpathy/LLM101n: LLM101n: Let's Build a Storyteller
The GitHub repository "LLM101n: Let's build a Storyteller" offers a course on creating a Storyteller AI Large Language Model using Python, C, and CUDA. It caters to beginners, covering language modeling, deployment, programming, data types, deep learning, and neural nets. Additional chapters and appendices are available for further exploration.
LLMs on the Command Line
Simon Willison presented a Python command-line utility for accessing Large Language Models (LLMs) efficiently, supporting OpenAI models and plugins for various providers. The tool enables running prompts, managing conversations, accessing specific models like Claude 3, and logging interactions to a SQLite database. Willison highlighted using LLM for tasks like summarizing discussions and emphasized the importance of embeddings for semantic search, showcasing LLM's support for content similarity queries and extensibility through plugins and OpenAI API compatibility.
Meta Large Language Model Compiler
Large Language Models (LLMs) are utilized in software engineering but underused in code optimization. Meta introduces the Meta Large Language Model Compiler (LLM Compiler) for code optimization tasks. Trained on LLVM-IR and assembly code tokens, it aims to enhance compiler understanding and optimize code effectively.
From the Tensor to Stable Diffusion
The GitHub repository offers a comprehensive machine learning guide covering deep learning, vision-language models, neural networks, CNNs, RNNs, and paper implementations like LeNet, AlexNet, ResNet, GRU, LSTM, CBOW, Skip-Gram, Transformer, and BERT. Ideal for exploring machine learning concepts.
Meta AI develops compact language model for mobile devices
Meta AI introduces MobileLLM, a compact language model challenging the need for large AI models. Optimized with under 1 billion parameters, it outperforms larger models by 2.7% to 4.3% on tasks. MobileLLM's innovations include model depth prioritization, embedding sharing, grouped-query attention, and weight-sharing techniques. The 350 million parameter version matches larger models' accuracy on specific tasks, hinting at compact models' potential for efficiency. While not publicly available, Meta has open-sourced the pre-training code, promoting research towards sustainable AI models for personal devices.
Small models, slightly improved, probably still not good enough for the same use as online models. Nothing wrong with incremental progress, however.
1.5B parameter model does seem to be a pretty decent step up, even beating larger models by a wide margin. I'm not sure why they didn't go larger -- having a more efficient model that fits on hardware the size of the RPi could be a gamechanger (IIRC TinyLlama 7B does run, barely).
Even better if it could be tuned in someway to allow dialogue to influence NPC behavior or actions.
Optimizing and loading in your own voice, selecting your primary language and adding a little bit of personal knowledge like nicknames, location and stuff?
My pixel 8 apparently can use / load local models but don't have the time right now to follow that rabbit hole
Related
GitHub – Karpathy/LLM101n: LLM101n: Let's Build a Storyteller
The GitHub repository "LLM101n: Let's build a Storyteller" offers a course on creating a Storyteller AI Large Language Model using Python, C, and CUDA. It caters to beginners, covering language modeling, deployment, programming, data types, deep learning, and neural nets. Additional chapters and appendices are available for further exploration.
LLMs on the Command Line
Simon Willison presented a Python command-line utility for accessing Large Language Models (LLMs) efficiently, supporting OpenAI models and plugins for various providers. The tool enables running prompts, managing conversations, accessing specific models like Claude 3, and logging interactions to a SQLite database. Willison highlighted using LLM for tasks like summarizing discussions and emphasized the importance of embeddings for semantic search, showcasing LLM's support for content similarity queries and extensibility through plugins and OpenAI API compatibility.
Meta Large Language Model Compiler
Large Language Models (LLMs) are utilized in software engineering but underused in code optimization. Meta introduces the Meta Large Language Model Compiler (LLM Compiler) for code optimization tasks. Trained on LLVM-IR and assembly code tokens, it aims to enhance compiler understanding and optimize code effectively.
From the Tensor to Stable Diffusion
The GitHub repository offers a comprehensive machine learning guide covering deep learning, vision-language models, neural networks, CNNs, RNNs, and paper implementations like LeNet, AlexNet, ResNet, GRU, LSTM, CBOW, Skip-Gram, Transformer, and BERT. Ideal for exploring machine learning concepts.
Meta AI develops compact language model for mobile devices
Meta AI introduces MobileLLM, a compact language model challenging the need for large AI models. Optimized with under 1 billion parameters, it outperforms larger models by 2.7% to 4.3% on tasks. MobileLLM's innovations include model depth prioritization, embedding sharing, grouped-query attention, and weight-sharing techniques. The 350 million parameter version matches larger models' accuracy on specific tasks, hinting at compact models' potential for efficiency. While not publicly available, Meta has open-sourced the pre-training code, promoting research towards sustainable AI models for personal devices.