Vercel AI SDK: RAG Guide
Retrieval-augmented generation (RAG) chatbots enhance Large Language Models (LLMs) by accessing external information for accurate responses. The process involves embedding queries, retrieving relevant material, and setting up projects with various tools.
Read original articleThis guide introduces the concept of retrieval-augmented generation (RAG) chatbots, explaining how they enhance Large Language Models (LLMs) by providing specific information relevant to the prompt. RAG addresses the limitation of LLMs being restricted to their training data, enabling them to access external information for more accurate responses. The process involves embedding a user's query, retrieving relevant source material, and passing it as context to the model. Embeddings represent words or phrases as vectors in a high-dimensional space, facilitating semantic search. Chunking, breaking down source material into smaller pieces, is crucial for effective embedding. The guide details setting up a project using Next.js, Vercel AI SDK, OpenAI, Drizzle ORM, Postgres with pgvector, and other tools. It covers creating embeddings, storing them in a database, and integrating them into a chatbot application. The tutorial includes steps for database setup, migration, and API key generation, emphasizing the importance of chunking, embedding logic, and server actions for efficient RAG implementation.
Related
Surprise, your data warehouse can RAG
A blog post by Maciej Gryka explores "Retrieval-Augmented Generation" (RAG) to enhance AI systems. It discusses building RAG pipelines, using text embeddings for data retrieval, and optimizing data infrastructure for effective implementation.
Show HN: R2R V2 – A open source RAG engine with prod features
The R2R GitHub repository offers an open-source RAG answer engine for scalable systems, featuring multimodal support, hybrid search, and a RESTful API. It includes installation guides, a dashboard, and community support. Developers benefit from configurable functionalities and resources for integration. Full documentation is available on the repository for exploration and contribution.
GraphRAG (from Microsoft) is now open-source!
GraphRAG, a GitHub tool, enhances question-answering over private datasets with structured retrieval and response generation. It outperforms naive RAG methods, offering semantic analysis and diverse, comprehensive data summaries efficiently.
Txtai – A Strong Alternative to ChromaDB and LangChain for Vector Search and RAG
Generative AI's rise in business and challenges with Large Language Models are discussed. Retrieval Augmented Generation (RAG) tackles data generation issues. LangChain, LlamaIndex, and txtai are compared for search capabilities and efficiency. Txtai stands out for streamlined tasks and text extraction, despite a narrower focus.
Related
Surprise, your data warehouse can RAG
A blog post by Maciej Gryka explores "Retrieval-Augmented Generation" (RAG) to enhance AI systems. It discusses building RAG pipelines, using text embeddings for data retrieval, and optimizing data infrastructure for effective implementation.
Show HN: R2R V2 – A open source RAG engine with prod features
The R2R GitHub repository offers an open-source RAG answer engine for scalable systems, featuring multimodal support, hybrid search, and a RESTful API. It includes installation guides, a dashboard, and community support. Developers benefit from configurable functionalities and resources for integration. Full documentation is available on the repository for exploration and contribution.
GraphRAG (from Microsoft) is now open-source!
GraphRAG, a GitHub tool, enhances question-answering over private datasets with structured retrieval and response generation. It outperforms naive RAG methods, offering semantic analysis and diverse, comprehensive data summaries efficiently.
Txtai – A Strong Alternative to ChromaDB and LangChain for Vector Search and RAG
Generative AI's rise in business and challenges with Large Language Models are discussed. Retrieval Augmented Generation (RAG) tackles data generation issues. LangChain, LlamaIndex, and txtai are compared for search capabilities and efficiency. Txtai stands out for streamlined tasks and text extraction, despite a narrower focus.